Dynamics and genealogy of strains in spatially extended host-pathogen models.
نویسندگان
چکیده
We examine the dynamics of evolution in a generic spatial model of a pathogen infecting a population of hosts, or an analogous predator-prey system. Previous studies of this model have found a range of interesting phenomena that differ from the well-mixed version. We extend these studies by examining the spatial and temporal dynamics of strains using genealogical tracing. When transmissibility can evolve by mutation, strains of intermediate transmissibility dominate even though high-transmissibility mutants have a short-term reproductive advantage. Mutant strains continually arise and grow rapidly for many generations but eventually go extinct before dominating the system. We find that, after a number of generations, the mutant pathogen characteristics strongly impact the spatial distribution of their local host environment, even when there are diverse types coexisting. Extinction is due to the depletion of susceptibles in the local environment of these mutant strains. Studies of spatial and genealogical relatedness reveal the self-organized spatial clustering of strains that enables their impact on the local environment. Thus, we find that selection acts against the high-transmissibility strains on long time-scales as a result of the feedback due to environmental change. Our study shows that averages over space or time should not be assumed to adequately describe the evolutionary dynamics of spatially distributed host-pathogen systems.
منابع مشابه
The effects of host contact network structure on pathogen diversity and strain structure.
For many important pathogens, mechanisms promoting antigenic variation, such as mutation and recombination, facilitate immune evasion and promote strain diversity. However, mathematical models have shown that host immune responses to polymorphic antigens can structure pathogen populations into discrete strains with nonoverlapping antigenic repertoires, despite recombination. Until now, models o...
متن کاملSpatially structured superinfection and the evolution of disease virulence.
When pathogen strains differing in virulence compete for hosts, spatial structuring of disease transmission can govern both evolved levels of virulence and patterns in strain coexistence. We develop a spatially detailed model of superinfection, a form of contest competition between pathogen strains; the probability of superinfection depends explicitly on the difference in levels of virulence. W...
متن کاملThe community ecology of pathogens: coinfection, coexistence and community composition.
Disease and community ecology share conceptual and theoretical lineages, and there has been a resurgence of interest in strengthening links between these fields. Building on recent syntheses focused on the effects of host community composition on single pathogen systems, we examine pathogen (microparasite) communities using a stochastic metacommunity model as a starting point to bridge communit...
متن کاملHost Mobility Drives Pathogen Competition in Spatially Structured Populations
Interactions among multiple infectious agents are increasingly recognized as a fundamental issue in the understanding of key questions in public health regarding pathogen emergence, maintenance, and evolution. The full description of host-multipathogen systems is, however, challenged by the multiplicity of factors affecting the interaction dynamics and the resulting competition that may occur a...
متن کاملBacteriophage migration via nematode vectors: host-parasite-consumer interactions in laboratory microcosms.
Pathogens vectored by nematodes pose serious agricultural, economic, and health threats; however, little is known of the ecological and evolutionary aspects of pathogen transmission by nematodes. Here we describe a novel model system with two trophic levels, bacteriophages and nematodes, each of which competes for bacteria. We demonstrate for the first time that nematodes are capable of transmi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of theoretical biology
دوره 221 4 شماره
صفحات -
تاریخ انتشار 2003